您现在的位置: 晨光科技 >> 文章 >> 新闻、背景、评论等 >> 生物工程 >> 正文  
  人工智能会让结构生物学家“失业”?           
人工智能会让结构生物学家“失业”?
[ 作者:佚名    转贴自:http://www.ce.cn/cysc/newmain/yc/jsxw/202211/16/t20221116_38231773.shtml    点击数:29    更新时间:2022/12/1    文章录入:LA ]
[注:本站登载的某些文章并不代表本站支持或反对其观点或肯定其真实性]

人工智能会让结构生物学家“失业”?

2022年11月16日 07:19   来源:解放日报   

  记者 俞陶然

  最近,网上流传着一个关于结构生物学家颜宁回国“真实原因”的说法,称AlphaFold 2(阿尔法折叠2)等人工智能系统的问世,让结构生物学家面临“失业”困境。知乎上有人写道:“颜宁教授看到AlphaFold,就像骁勇善战的部落首领看到了航空母舰。不是颜宁不行,而是英国DeepMind太强大了。”

  事实是否如此?记者采访了计算生物学家、复旦大学复杂体系多尺度研究院院长马剑鹏教授。他带领团队已开发出功能与AlphaFold 2类似的OPUSFold(作品折叠)系统。他直言:“AI(人工智能)让一流结构生物学家失业,是我听过的最荒唐的说法。”

  AI助力摘取“皇冠上的明珠”

  “阿尔法折叠2”是谷歌旗下深度思维(DeepMind)公司的产品,与“阿尔法围棋”相仿,都是采用机器学习技术的人工智能系统。在2020年举行的国际蛋白质结构预测大赛上,“阿尔法折叠2”夺得冠军,它预测的蛋白质三维结构与实验测定的结构只有很小差异,被《科学》杂志评为“2020年十大科学突破”之一。

  为何要用人工智能系统预测蛋白质三维结构?马剑鹏解释,蛋白质由一系列氨基酸折叠而成。氨基酸线性排列成一条长链,把它放到水里,整条链会在微秒至毫秒内折叠成一个稳定的三维结构。研究氨基酸长链如何自发地折叠成三维结构,简称“蛋白质折叠”问题,因其重要性和复杂性,被视作现代分子生物学“皇冠上的明珠”。在应用领域,小分子药物研发的基础就是蛋白质结构解析,只有探明目标蛋白质的“三维地图”,才能找到药物作用于蛋白质的靶点。

  对科学家来说,测定氨基酸序列相对容易,但解析蛋白质结构的难度很大,因为蛋白质结构取决于几千个氨基酸各个原子间的相互作用力。根据已知氨基酸序列,用计算机预测蛋白质结构的运算量,连世界上最快的超级计算机也很难承受。

  随着深度学习、强化学习等人工智能技术的兴起,计算生物学出现了跨越式发展。“阿尔法折叠2”等系统在学习实验测定的大量蛋白质结构后,具备了根据氨基酸序列准确预测结构的能力。今年,深度思维公司发布数据集更新,称“阿尔法折叠2”已预测几乎所有已知的蛋白质。

  “干湿结合”成为生物学趋势

  既然人工智能系统可以准确预测蛋白质结构,那么结构生物学家是否会面临“失业”困境?

  据介绍,结构生物学是一门研究生物大分子的三维空间结构、动态过程和生物学功能的交叉性学科。解析各种蛋白质的三维结构,是结构生物学家的一项主业。作为国际知名的结构生物学家,颜宁曾在清华大学、普林斯顿大学工作,是美国国家科学院外籍院士、美国艺术与科学院院士。

  对于网传说法,颜宁通过微博回应:在她研究的电压门控钠离子和钙离子通道领域,“阿尔法折叠2”学习了她带领团队解析的多个生物结构后,去年的预测精度达到颜宁团队2017年的水平,今年则没有进步。“AI团队做预测,我们做实验,测试新型小分子与蛋白的相互作用,迄今为止预测无一正确。”

  马剑鹏表示,“阿尔法折叠2”远没有达到取代结构生物学家的能力。目前,它只能预测单链蛋白质的结构,基本不具备预测多链蛋白质结构的功能。而且在单链蛋白质预测方面,由于人工智能预测基于对已知蛋白质结构的比对学习,它对与其同源的蛋白质结构预测是比较准确的,然而面对拥有“孤儿序列”(氨基酸序列独一无二)的蛋白质时,“阿尔法折叠2”往往就无法准确预测了。

  另外,在蛋白质侧链预测方面,“阿尔法折叠2”也有较大的提升空间。2021年,复旦大学复杂体系多尺度研究院在英国《生物信息学简报》上发表论文,报告他们开发的“作品折叠”在蛋白质侧链预测精度上,比“阿尔法折叠2”高。据介绍,蛋白质三维结构由主链和侧链搭建而成。药物分子与蛋白质的结合大多通过与氨基酸侧链相互作用来实现,所以人工智能系统对侧链结构的精准预测,对新药研发具有重要价值。

  由此可见,人工智能并不会让结构生物学家“失业”,两者不是取代关系,而是互补关系。“AlphaFold 2对颜宁这样的一流实验结构生物学家来说,有百利而无一害。”马剑鹏说,实验结构生物学家也是要用计算机建模的,AlphaFold 2、OPUS-Fold这类软件可以加快建模速度,提高蛋白质结构解析的效率。

  如今,“干湿结合”已成为结构生物学研究的趋势。长期以来,开展计算生物学研究的“干实验室”是生物学的配角。随着人工智能的兴起,这个配角已逐渐成长为主角,与实验生物学家工作的“湿实验室”更紧密地结合在一起,共同探索生命分子结构的奥秘。

  “真正的研究者都乐于拥抱技术进步,善于用各种技术去探寻、解答自己感兴趣的问题。”颜宁表示,期待AI越来越强大。

  • 上一篇文章: 超越谷歌“AlphaFold2”,为新药研发提供利器,复旦复杂体系多尺度研究院团队发表全新蛋白质侧链预测成果

  • 下一篇文章: AlphaFold 2迎强悍对手!DeepMind和华盛顿大学团队同日发表论文播报文章
  •    
    [注:标题搜索比内容搜索快]
    发表评论】【告诉好友】【打印此文】【关闭窗口
     最新5篇热点文章
  • TEMP[126]

  • SAE001[93]

  • 高光谱成像基本原理[67]

  • 蒸汽火车解剖图[78]

  • 星球大战死星解剖图集 star wa…[86]

  •  
     最新5篇推荐文章
  • 外媒:正在唤醒中国的习近平[340]

  • 中国反伪科学运动背后的CIA黑手…[517]

  • [转载]袁隆平真言:中国最大的…[698]

  • 台专家:当年我们造IDF时 大陆…[591]

  • 旅日华人:中国严重误判日本民…[596]

  •  
     相 关 文 章
  • 首条量子芯片生产线有了“火眼…[27]

  • AlphaFold 2迎强悍对手!DeepM…[28]

  • 超越谷歌“AlphaFold2”,为新…[26]


  •   网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)
        没有任何评论
    设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 管理登录 | 
    版权所有 Copyright© 2003 晨光科技        站长:璀璨星辰        页面执行时间:304.69毫秒
    Powered by:MyPower Ver3.5