您现在的位置: 晨光科技 >> 文章 >> 技术理论 >> IT >> 正文  
  SLAM的前世今生 终于有人说清楚了 | 硬创公开课           
SLAM的前世今生 终于有人说清楚了 | 硬创公开课
[ 作者:佚名    转贴自:https://www.leiphone.com/news/201605/5etiwlnkWnx7x0zb.html    点击数:38    更新时间:2018/3/21    文章录入:LA ]
[注:本站登载的某些文章并不代表本站支持或反对其观点或肯定其真实性]

SLAM的前世今生 终于有人说清楚了 | 硬创公开课
本文作者:宗仁
2016-05-16 19:40
专题:硬创公开课
导语:根据雷锋网的调查,了解SLAM并能真正把它说清楚的国内大牛并不多,今天,我们请来了速感科技的CTO张一茗,从SLAM的前世开始……
今年8月,雷锋网(搜索“雷锋网(公众号:雷锋网)”公众号关注)将在深圳举办“全球人工智能与机器人创新大会”(GAIR),在本次大会上,我们将发布“人工智能与机器人Top25创新企业榜“,速感科技是我们重点关注的公司之一。今天,我们邀请到了速感科技CTO张一茗,为大家揭秘SLAM技术的前世今生。


张一茗。速感科技CTO。毕业于北京航空航天大学,师从中国惯性技术领域的著名专家冯培德院士,多年组合导航定位系统研究经验。热爱技术和研发,摘得过许多诸如Intel iot创客马拉松、清华创客马拉松等创客比赛第一名。速感科技经过多年历练,发展出一套以视觉SLAM为核心,集探索、导航、定位、避障、路径规划为一体的成熟化机器人无源导航算法。
SLAM作为一种基础技术,从最早的军事用途(核潜艇海底定位就有了SLAM的雏形)到今天,已经逐步走入人们的视野,过去几年扫地机器人的盛行让它名声大噪,近期基于三维视觉的VSLAM又让它越来越显主流,许多人不得不关注它,但根据雷锋网的调查,了解它并能真正把它说清楚的国内大牛并不多,今天,我们请来了速感科技的CTO,张一茗,从SLAM的前世今生开始,彻底扫清我们心中的疑惑。
▌SLAM的前世
我之前从本科到研究生,一直在导航与定位领域学习,一开始偏重于高精度的惯性导航、卫星导航、星光制导及其组合导航。出于对实现无源导航的执念,我慢慢开始研究视觉导航中的SLAM方向,并与传统的惯性器件做组合,实现独立设备的自主导航定位。
定位、定向、测速、授时是人们惆怅千年都未能完全解决的问题,最早的时候,古人只能靠夜观天象和司南来做简单的定向。直至元代,出于对定位的需求,才华横溢的中国人发明了令人叹为观止的牵星术,用牵星板测量星星实现纬度估计。
1964年美国投入使用GPS,突然就打破了大家的游戏规则。军用的P码可以达到1-2米级精度,开放给大众使用的CA码也能够实现5-10米级的精度。
后来大家一方面为了突破P码封锁,另一方面为了追求更高的定位定姿精度,想出了很多十分具有创意的想法来挺升GPS的精度。利用RTK的实时相位差分技术,甚至能实现厘米的定位精度,基本上解决了室外的定位和定姿问题。
但是室内这个问题就难办多了,为了实现室内的定位定姿,一大批技术不断涌现,其中,SLAM技术逐渐脱颖而出。SLAM是一个十分交叉学科的领域,我先从它的传感器讲起。
▌离不开这两类传感器
目前用在SLAM上的Sensor主要分两大类,激光雷达和摄像头。

这里面列举了一些常见的雷达和各种深度摄像头。激光雷达有单线多线之分,角分辨率及精度也各有千秋。SICK、velodyne、Hokuyo以及国内的北醒光学、Slamtech是比较有名的激光雷达厂商。他们可以作为SLAM的一种输入形式。
这个小视频里展示的就是一种简单的2D SLAM。

这个小视频是宾大的教授kumar做的特别有名的一个demo,是在无人机上利用二维激光雷达做的SLAM。

而VSLAM则主要用摄像头来实现,摄像头品种繁多,主要分为单目、双目、单目结构光、双目结构光、ToF几大类。他们的核心都是获取RGB和depth map(深度信息)。简单的单目和双目(Zed、leapmotion)我这里不多做解释,我主要解释一下结构光和ToF。
▌最近流行的结构光和TOF
结构光原理的深度摄像机通常具有激光投射器、光学衍射元件(DOE)、红外摄像头三大核心器件。

这个图(下图)摘自primesense的专利。


第一页它是由两幅十分规律的散斑组成,最后同时被红外相机获得,精度相对较高。但据说DOE成本也比较高。
还有一种比较独特的方案(最后一幅图),它采用mems微镜的方式,类似DLP投影仪,将激光器进行调频,通过微镜反射出去,并快速改变微镜姿态,进行行列扫描,实现结构光的投射。(产自ST,ST经常做出一些比较炫的黑科技)。
ToF(time of flight)也是一种很有前景的深度获取方法。
传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息。类似于雷达,或者想象一下蝙蝠,softkinetic的DS325采用的就是ToF方案(TI设计的),但是它的接收器微观结构比较特殊,有2个或者更多快门,测ps级别的时间差,但它的单位像素尺寸通常在100um的尺寸,所以目前分辨率不高。以后也会有不错的前景,但我觉得并不是颠覆性的。
好,那在有了深度图之后呢,SLAM算法就开始工作了,由于Sensor和需求的不同,SLAM的呈现形式略有差异。大致可以分为激光SLAM(也分2D和3D)和视觉SLAM(也分Sparse、semiDense、Dense)两类,但其主要思路大同小异。

这个是Sparse(稀疏)的

这个偏Dense(密集)的

▌SLAM算法实现的4要素
SLAM算法在实现的时候主要要考虑以下4个方面吧:
1. 地图表示问题,比如dense和sparse都是它的不同表达方式,这个需要根据实际场景需求去抉择
2. 信息感知问题,需要考虑如何全面的感知这个环境,RGBD摄像头FOV通常比较小,但激光雷达比较大
3. 数据关联问题,不同的sensor的数据类型、时间戳、坐标系表达方式各有不同,需要统一处理
4. 定位与构图问题,就是指怎么实现位姿估计和建模,这里面涉及到很多数学问题,物理模型建立,状态估计和优化
其他的还有回环检测问题,探索问题(exploration),以及绑架问题(kidnapping)。

这个是一个比较有名的SLAM算法,这个回环检测就很漂亮。但这个调用了cuda,gpu对运算能力要求挺高,效果看起来比较炫。
▌以VSLAM举个栗子

我大概讲一种比较流行的VSLAM方法框架。
整个SLAM大概可以分为前端和后端,前端相当于VO(视觉里程计),研究帧与帧之间变换关系。首先提取每帧图像特征点,利用相邻帧图像,进行特征点匹配,然后利用RANSAC去除大噪声,然后进行匹配,得到一个pose信息(位置和姿态),同时可以利用IMU(Inertial measurement unit惯性测量单元)提供的姿态信息进行滤波融合
后端则主要是对前端出结果进行优化,利用滤波理论(EKF、UKF、PF)、或者优化理论TORO、G2O进行树或者图的优化。最终得到最优的位姿估计。
后端这边难点比较多,涉及到的数学知识也比较多,总的来说大家已经慢慢抛弃传统的滤波理论走向图优化去了。
因为基于滤波的理论,滤波器稳度增长太快,这对于需要频繁求逆的EKF(扩展卡尔曼滤波器),PF压力很大。而基于图的SLAM,通常以keyframe(关键帧)为基础,建立多个节点和节点之间的相对变换关系,比如仿射变换矩阵,并不断地进行关键节点的维护,保证图的容量,在保证精度的同时,降低了计算量。
列举几个目前比较有名的SLAM算法:PTAM,MonoSLAM, ORB-SLAM,RGBD-SLAM,RTAB-SLAM,LSD-SLAM。


所以大家如果想学习SLAM的话,各个高校提高的素材是很多的,比如宾大、MIT、ETH、香港科技大学、帝国理工等等都有比较好的代表作品,还有一个比较有前景的就是三维的机器视觉,普林斯顿大学的肖剑雄教授结合SLAM和Deep Learning做一些三维物体的分类和识别, 实现一个对场景深度理解的机器人感知引擎。

http://robots.princeton.edu/talks/2016_MIT/RobotPerception.pdf  这是他们的展示。
总的来说,SLAM技术从最早的军事用途(核潜艇海底定位就有了SLAM的雏形)到今天,已经逐步走入人们的视野,扫地机器人的盛行更是让它名声大噪。同时基于三维视觉的VSLAM越来越显主流。在地面/空中机器人、VR/AR/MR、汽车/AGV自动驾驶等领域,都会得到深入的发展,同时也会出现越来越多的细分市场等待挖掘。

这个是occipital团队出的一个产品,是个很有意思的应用,国内卖4000+,大概一个月1000出货量吧(虽然不是很多,但是效果不错,pad可玩)虚拟家居、无人飞行/驾驶、虚拟试衣、3D打印、刑侦现场记录、沉浸式游戏、增强现实、商场推送、设计辅助、地震救援、工业流水线、GIS采集等等,都等待着VSLAM技术一展宏图
▌SLAM的今生——还存在着问题
多传感器融合、优化数据关联与回环检测、与前端异构处理器集成、提升鲁棒性和重定位精度都是SLAM技术接下来的发展方向,但这些都会随着消费刺激和产业链的发展逐步解决。就像手机中的陀螺仪一样,在不久的将来,也会飞入寻常百姓家,改变人类的生活。
不过说实话,SLAM在全面进入消费级市场的过程中,也面对着一些阻力和难题。比如Sensor精度不高、计算量大、Sensor应用场景不具有普适性等等问题。
多传感器融合、优化数据关联与回环检测、与前端异构处理器集成、提升鲁棒性和重定位精度都是SLAM技术接下来的发展方向,但这些都会随着消费刺激和产业链的发展逐步解决。就像手机中的陀螺仪一样,在不久的将来,也会飞入寻常百姓家,改变人类的生活。
(激光雷达和摄像头两种 SLAM 方式各有什么优缺点呢,有没有一种综合的方式互补各自的缺点的呢?)
激光雷达优点是可视范围广,但是缺点性价比低,低成本的雷达角分辨率不够高,影响到建模精度。vSLAM的话缺点就是FOV通常不大,50-60degree,这样高速旋转时就容易丢,解决方案有的,我们公司就在做vSLAM跟雷达还有IMU的组合。
(请问目前基于视觉的SLAM的计算量有多大?嵌入式系统上如果要做到实时30fps,是不是只有Nvidia的芯片(支持cuda)才可以?)
第一个问题,虽然基于视觉的SLAM计算量相对较大,但在嵌入式系统上是可以跑起来的,Sparse的SLAM可以达到30-50hz(也不需要GPU和Cuda),如果dense的话就比较消耗资源,根据点云还有三角化密度可调,10-20hz也是没有问题。
并不一定要用cuda,一些用到cuda和GPU的算法主要是用来加速SIFT、ICP,以及后期三角化和mesh的过程,即使不用cuda可以采用其他的特征点提取和匹配策略也是可以的。
▌最后一个问题
(今年8月,雷锋网将在深圳举办“全球人工智能与机器人创新大会”(简称:GAIR)。想了解下,您对机器人的未来趋势怎么看?)
这个问题就比较大了。
机器人产业是个很大的Ecosystem,短时间来讲,可能产业链不够完整,消费级市场缺乏爆点爆款。虽然大家都在谈论做机器人,但是好多公司并没有解决用户痛点,也没有为机器人产业链创造什么价值。
但是大家可以看到, 大批缺乏特色和积淀的机器人公司正在被淘汰,行业格局越来越清晰,分工逐渐完善,一大批细分市场成长起来。
从机器人的感知部分来说,传感器性能提升、前端处理(目前的sensor前端处理做的太少,给主CPU造成了很大的负担)、多传感器融合是一个很大的增长点。
现在人工智能也开始扬头,深度学习、神经网络专用的分布式异构处理器及其协处理器成为紧急需求,我个人很希望国内有公司能把这块做好。
也有好多创业公司做底层工艺比如高推重比电机、高能量密度电池、复合材料,他们和机器人产业的对接,也会加速机器人行业的发展。整个机器人生态架构会越来越清晰,从硬件层到算法层到功能层到SDK 再到应用层,每一个细分领域都有公司切入,随着这些产业节点的完善,能看到机器人行业的前景还是很棒的,相信不久之后就会迎来堪比互联网的指数式增长!

  • 上一篇文章: Verilog HDL

  • 下一篇文章: github 开源及私有软件项目的托管平台
  •    
    [注:标题搜索比内容搜索快]
    发表评论】【告诉好友】【打印此文】【关闭窗口
     最新5篇热点文章
  • 轨道钢承重计算公式及应用[109]

  • 【选型】如何为变频器选取阻值…[86]

  • AIS2023参展厂商名录[345]

  • AGV综合选型[170]

  • APIE 2023第4届亚太国际智能装…[138]

  •  
     最新5篇推荐文章
  • 外媒:正在唤醒中国的习近平[305]

  • 中国反伪科学运动背后的CIA黑手…[494]

  • [转载]袁隆平真言:中国最大的…[668]

  • 台专家:当年我们造IDF时 大陆…[572]

  • 旅日华人:中国严重误判日本民…[577]

  •  
     相 关 文 章
    没有相关文章

      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)
        没有任何评论
    设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 管理登录 | 
    版权所有 Copyright© 2003 晨光科技        站长:璀璨星辰        页面执行时间:341.80毫秒
    Powered by:MyPower Ver3.5